Hardware Drawers with Organizer Trays

A few years back I built two rolling cabinets to hold all of my screws and other hardware. They were a big boon, but I quickly converted one over to having only drawers. It looks like the other is about to have the same thing happen. I have lots of plastic organizers that are well labeled and sorted, but they have a few issues. The first one is that I go into them so often they pile up everywhere. I even added a pull out shelf so there was always a place to sit one. There tend to be 2 or 3 stacked up at any given time.

The other issue with them, and this is minor but super annoying, is that occasionally the dividers shift and start mixing all your hardware up like a bad drink recipe. Lastly, I find myself taking the organizer with me to the project I am working on. Sometimes you absentmindedly pull the wrong screw, and it takes up more space where you are working.

I was inspired by Alexandre Chappel’s video about printing little trays and using them to organize hardware. I printed out a few of his trays and thought the concept was fantastic, but had some issues with the wall thickness in the model and wanted more label space. I made my own instead. They have rounded corners to help speed printing, consistent wall thickness, a slight taper to the sides to make pulling them in and out easy, and a large label area. Now I can pull only the tray of screws I need and take it to where I am working.

With the tray sizes worked out I did some measurements and found I could fit a drawer 8 trays wide if I was careful in how I cut everything. I went ahead and started installing runners in the cabinet. I cut a template that would set spacing and act as a router guide to cut a dado in the cabinet sides. Once again my trim router comes to the rescue. This will help with the drawer runner alignment and expose new wood for glue. The inside was covered in boiled linseed oil when I made it.

I took thinned maple and had a small production run of drawer runners. I sand the top and bottom smooth, marked the board for screw locations, ripped out each runner, drilled clearance holes for screws and then installed them. Each runner got glue, a few brads to keep it still, and 3 screws. There will be a lot of weight on these, so I didn’t want any movement.

I planned out all the drawers to be the same, and installed runners for each. Before I went into drawer production though, I made a prototype held together with clamps. Good thing I did! The original plan was for the drawers to be 6 trays deep. Looking at the left picture below, I have the drawer pulled out as far as I dare given the weight. I can’t see the label or the contents of the last row. Dropping back to 5 rows leaves plenty of drawer still inside the cabinet for stability. Metal slides would cost more money and drawer width, but allow full extension. I could have had a few more trays had I gone that way, but I am happy with my decision.

With the drawer parameters set I went back into production mode. The cabinets originally had a number of shelves made for them. I didn’t need those anymore, so I figured out how to incorporate them into the new drawers. I am working really hard to minimize waste these days, so I don’t have to go out to the store. No fancy joinery, just a rabbet on the bottom to help keep the drawer bottom in the right position. For the fronts I attached new plywood and kept the orientation the same so the grain pattern would flow down the front.

With the drawers all assembled and dried I needed to countersink the screws that hold the drawer pull on. Once again a template makes this repeated work fast and easy. The template goes inside the drawer and guides a forsner bit big enough for the drawer pull’s screw head. Countersinking like this keeps the head from interfering with my trays and protrudes the screw far enough so that It can bite into the drawer pull.

Drawer pull template in place inside the drawer
Hole drilled and drawer pull screw installed

The finished cabinet looks gorgeous and I was even able to use the same label holders as I did on the other cabinet. There are still shelves below for organizers I thought were worth keeping. The shelf space below is at only 1/3 full at most, and the drawer space is 3/4 full. I doubt I will have to build any more drawers in the future, but the cabinet has enough space for another 5 or so. Each drawer has a magnet embedded in the front to hold onto a small steel ruler. That way you can double check what you pull out, and always put fasteners back in the right place.

Router Table

While building my baby bookcase I noticed the table top on my router was not flat. The joinery was poor enough I had to go to the table saw instead. 10+ years of Florida humidity and a heavy router finally did it in. The red arrow is pointing to all the light coming out from under the straight level.

I use my router table a lot, so I wanted something nice to replace it. A full professional router table setup can cost 1,000 bucks with all the bells and whistles. I want something of decent quality, but not for that much money. I did a ton of research and finally broke down to buying a really high quality lift, and building the rest. Say goodbye to my old friend! By the way, I took the mounting plate out and tried it on my tablesaw top. It had a very distinct rock, so it wasn’t flat either.

The Top

These days my building and blogging are badly out of sync. Some short projects get posted in a week or two, and bigger ones linger for months before getting posted. This one started right about the time we were all supposed to limit our trips out to essentials only. The hardware stores are open, but I can’t call this router table essential. A broken toilet or water heater, this is not.

I normally would have gone to pickup laminate faced plywood, but instead I looked around and decided to use this big piece of butcher block counter top. Some friends were having their kitchen redone and saved it for me.

I got to cutting off a nice hunk and my saw went a little nuts. It turns out the way they clamp everything together is with screws! Lots and lots of screws. If you look at the side, they even cut through some to make the counter top the right size, and just filled the void with putty. They must make these things in massive sheets, then cut down what they need.

I took my number 5 to it and planed off all the old finish that was feeling a little gummy. It looks a lot nicer now. This is really soft pine and not as flat or as stable as I was hoping. There was some twist I couldn’t quite get out.

With the top mostly flat, I built up a set of guides to install my router lift. This part didn’t go quite as planned either. I tried to attach each piece together with pocket hole screws, but going into the plywood sideways with a screw caused it to de-laminate and bulge. I muddled through with double sticky tape and got to routing with a template bit.

Once I had a recess routed that was the thickness of the router lift top, I went through and cut out the inside area. Those pesky screws came to bite me again, my jigsaw was not happy. When it was all cutout I marked the location of the leveling set screws and soaked the area with thin CA glue to stabilize the wood. I was worried the set screws would slowly sink into this soft pine otherwise.

The top’s twist was a little evident in the fit of the router top, and the template bit’s radius was off. It turns out the lift has a corner radius of 3/4″ of an inch, and my bit is 3/4″ in diameter which yields a 3/8″ radius. I think we are going to call this a practice table top. I will eventually get a new material and make a better one. I put down a few coats of polyurethane to seal it up and give me a solid surface to wax.


With the top basically finished I was able to move on to the base. Using the plywood I had available I made a 3 chambered base. The left was going to be for open storage, the center would house the router and collect most of the dust, and the right would have a set of drawers for bit storage.

I set the top down and the twist is even more evident. The bottom is really uneven, so I guess they only ever planed the top to flat-ish.

I thinned down some maple scraps and cut them up to make runners. I used a piece of hardboard as a template for the drawer side height, and it also served as a square and guide for installing the runners. I nailed and glued those in place, then hit everything with boiled linseed oil to finish.


I had some ideas about how I wanted to make a fence, but wasn’t quite sure which way to go. I was also running low on some materials, so to conserve, I just re-purposed the fence from my old router table. I added wings to make it reach out further. To hold it in place I made it go past the edges of the table, then used a little clamp paw to squeeze it down to the edge of the table.

To attach the wings I just screwed them down from underneath

It worked reasonably well, except that any time I pushed on the fence in the center, it seemed to bow outward. The system wasn’t rigid enough. I added a support across the back to help stiffen it up. That reduced the bow. Next time I will sink some tracks into the table top to facilitate more centralized clamping.


Things were starting to come together. With the top in place and a working fence available I was able to employ it in making drawers. Nothing fancy, just some plywood sides with half lap joints and rabbeted bottoms. I added drawer fronts with rounded edges and finished everything with boiled linseed oil.

The top drawer holds my trim router and all 1/4″ shank bits. Only got this thing a month or two ago, but have found it to be an incredibly useful tool.

Next are all of my 1/2″ shank bits. They fit with plenty of space to spare. I 3D printed the holders for these because I didn’t have the right sized drill bits. A 1/2″ bit will leave a really snug fit. My next size up was a 5/8″ forstner bit. Too loose! Everything is kind of grouped and there is a lot of room left for new bits. The last drawer is empty believe it or not. Plenty of room to grow!

Finishing Touches

With the drawers set I was able to work on a few finishing touches. I moved the power switch over from the old table to the new one. This works great and will stay. There is a hole in the back for the router’s power cord to come through. I covered it with a custom 3D print cover. I put a cover over the front router cavity with magnets. It comes right off if I need to service something, but otherwise has gaps to pull air and dust through when in operation. On that cover I have two printed holders with magnets for the collet release and hex tool that runs the lift. Lastly I added a shelf to the left cavity. It holds common use accessories and a stack of different brass setup bars I cut from 12″ lengths of key stock.

I have been using this table for a few weeks and it has been working really well. The router lift was pricey, but is a dream to work with. It adjusts easily and locks down securely. The top is fine for now. The pine has already gotten dented and my install job has left some gaps. The fence clamps work well, but it flexes too much. I will take all these lessons learned and do a series of upgrades soon. For now, it is back to work on other projects.

Under Desk Mess Wire Shelf

I will be honest, underneath my office desk is a hot mess. Wires everywhere and power strips piled up. I tried to push everything off to the sides, but it always migrates back to the center. I kick the stuff around and have switched off the power by accident before. Time to fix this pile.

I had an idea that trimming a set of wire shelves narrow would give me a good platform to hold up all the power strips and lots of spots to strap things down. This 4 foot shelf was only 10 dollars at lowes. It gives me a really great jumping off point. I started by taking off the longer rung section. This left me with a 6.5″ wide shelf.

From there I designed some brackets to go under my desk. They would strap down the shelf with zip ties, align with a shoulder to the desk’s back edge, and screw into the sides of the desk.

The shelf fit check went well and I pulled my desk out to install the brackets. That is where things went a little south. I had measured, but not realized just how far away from the wall I would have to pull my desk to accommodate the shelf. The gap behind the table top was big enough to allow a lot of stuff to get tipped over and fall behind.

I regrouped and cut off the next row from the wire shelving. That shortened it to a little over 4 inches which was a lot more manageable. I shortened up and reprinted the brackets. This let me retest the distance between the desktop and the wall. This size is going to work out.

With the bracket on I was able to slip the shelf into place and start wrangling wires. It took disconnecting everything and a lot of velcro, but I got it all organized and away from my feet. I don’t know how many places this kind of organization is useful. Certainly entertainment centers and computer stations, but beyond that I am not certain. I will have to keep this trick in my back pocket if I find myself with another big interconnected wire mess to straighten up. Brackets added to thingiverse by request. I only modeled one side, mirror in your slicer software to get the other side.

Rolling Sink Carts

Now that my summer slog rock project is done, things have cooled down enough to get back into the shop. I am still refining the organization of my shop and turned my attention to the area around my sink. There was a pile of spray bottles and gallon jugs of cleaners scattered all over the place. I wanted to make a little set of carts that slide out to hold the junk.

The two carts sit low on either side of the sink and roll out to expose all their contents. These are already mostly full which means I either made them too small or I need to pair down the stuff I keep around.

I designed this project back in the spring based on a gallon jug of headlight fluid and two scraps of plywood I had. Thankfully 6 months later the jug was still the same size and the plywood was still there. The design is like a two shelf book case, only with no back. I made runners to go on either side of the shelf to prevent sag and keep everything from racking.

The assembly was mostly glue and brad nails, and once dry felt quite stiff. I gave everything a single heavy coat of polyurethane. I would typically use boiled linseed oil for shop furniture, but had some old urethane around and figured these would get splashed around the sink quite often.

I found really small wheels to put on the bottom. They don’t swivel, but I don’t need them to. The carts just roll in and out. Plus their compact size means I waste as little space as possible. Lastly I printed a beefy handle on top to help me grab and roll the loaded carts.

April 2019 Prints

RTIC Tumbler Handle

For some reason RTIC has changed the shape of their 30oz tumbler. Not sure if YETI did this, and they followed suit or what. I suspect it is a plot to sell more handles and accessories. As it stands, the old handle I designed doesn’t fit on the new style of cup any more. The taper angle and diameters are just a little different.

My old handle was printed in 2 parts because most low end printers (including the one I owned at the time) couldn’t print something that big. Now a days at least a 6×6 bed size is pretty bog standard. This new design will be all one piece. The cup is large enough in diameter that getting my calipers on it wasn’t going to work. I printed some rings of different diameters and used them to estimate the taper angle of the new cup.

With that figured out I just printed a new handle that looks a lot like the old one, only with slightly more finger room and a longer grip. Thingiverse link

Drawer Pull Centering Jig

I picked up a Kreg cabinet handle jig for one of my recent projects, and because handles are something you install pretty frequently. It is certainly possible to do them well without a jig, but that always makes repetitive work easier. The jig does a good job of setting the height and width of the holes. It doesn’t center them on the drawer though. I made a few add ons to help with that.

I took a length Kreg track that you would normally imbed into a table to make moveable hold downs. Instead, this becomes part of the top fence used to set depth. Now with a spacer it registers across the whole top edge of the drawer. That also lets you use an edge stop. Now it is all centered. Once set you can put handles in the same drawer position over and over again with no more measurements or adjustments. The only downside is that there was a scale on the back of the jig for setting depth. That no longer measures true because this vertical stop doesn’t register where the old one did.

Router bits

Storage and organization is a place where the printer continues to be endlessly helpful. I have had this nice router bit set for years, but always had trouble getting the bits back in their slot. They end up clanking around the drawer and taking up more space than they should. A simple printed tray gives them each a home and takes up a lot less drawer space. For smaller prints like this, a label maker works better than trying to 3D print the text.

More Dust Collection Adapters

Woodworking Dust Collection Rule 1: No two dust collection ports are ever the same size… EVER

Once again I find myself trying to fit a dust collection hose on to some of my tools and wind up having to 3D print a custom solution. Why is it always like this? This time it is a port for my random orbit sander to 1.25″ hose (which isn’t really 1.25″), one for my belt sander, and an adapter to go from that hose to my dust deputy inlet (which has some funky taper on it). The good news is that the ridges left over from 3D printing these always helps the adapter stay in place, even if it isn’t perfect. This is exactly why industry standards and groups like ASME and SAE exist.

Socket Cabinet

Not long after buying my first house I picked up a big set of socket wrenches from craftsman. Previously I had an odd assortment of hand me downs that were missing various sockets. The plastic trays the sockets came in were labeled and worked well. The case was always kind of shoddy. It tended to drop the drawers out and spill sockets everywhere. If you pulled the bottom drawer out the top drawers collapsed. I am finally ditching it and making my own cabinet.

I started by making plywood drawers for each plastic tray (1/4″, 3/8″, and 1/2″ socket set), and two more full drawers for extras. This is the first project I have done where I made the drawers all first, then built a cabinet to hold them all. Kind of a neat way to work.

Once I got all the drawers assembled and installed into the cabinet I covered the face frame of the cabinet with 1/4″ poplar. I thinned more poplar down to 5/8″ and put a heavy chamfer on it to make drawer fronts. I thought pocket hole screws would be a great way to attach the fronts. They were, but I forgot to reset the depth of the drill bit to 1/2″ instead of my standard 3/4″, and drove the first screw through the drawer front. oops…

That won’t matter too much, and I am sure nobody will notice. Mostly because I accidentally drilled the first set of drawer pull holes at 3″ instead of 5″. Otherwise the cabinet looks great after a coat of boiled linseed oil.

Now to fill it all up. I used small strips of plywood to make stops so the plastic organizer trays sit still and don’t slide left to right when opening and closing the drawers.

Everything fits with room to accommodate future purchases. I don’t do a lot of mechanic work, so this set will probably cover me for the very far future. Lastly I did 3d print a few little organizers and helpers. I seem to have a lot of 3/8″ extensions, so I made a little slot holder for them. Also adapters to go from 1/4″ hex drive to various socket set sizes. The steady drum beat of garage organization marches on.

Early 2019 Prints

I used to track my random prints closely and publish a monthly update on them. More recently a lot of my printing has been integrating with dust collection upgrades and other organizing efforts in my shop, so there hasn’t been a dedicated post. This is all still very workshop focused as that is where I have been directing my time this new year. The shop is becoming a very magical place to work.

First up is a used blade storage box. A sharps container. I was brought up using traptezoidal utility blades. The two sided retractable blade is a standard and is widely available. I lose them a lot, so I have like 10 of them around. They are cheap, and all of them have cruddy blade because I am too lazy to grab a screwdriver to open them up and flip the blade. Enter a new contender, the snap blade.

I always thought of snap blade knives as cheap box cutters. I bought one to try out after some online recommendations, and have become increasingly impressed. I think they are sharper, can be extended longer, and if you need a new edge, you just snap a segment off and get back to cutting.

Both methods leave sharp rusty around, so I printed a small box that helps you break the blades off and keeps them trapped inside for safe storage. Inside, the entrance has a ramp so blades would have a really hard time rattling out. It is like a lobster or crab trap. The entrance slit is just big enough for the blades to slip in.

I designed it to accept the 18mm snap knife blades, standard utility knife blades, and single edge razor blades.

I made a few and tried colorizing the raised text. I started with a paint marker, but the text was small enough it was getting smeared. I moved on to an ink stamp, but the ink is too thin. It soaked into the print layers and ran everywhere. You need something thick like paint, but easy to apply to a whole surface like an ink stamp. They look ugly but work perfectly. Thingiverse Link

I really wanted to spring for a nice whiteboard for the shop. One that doesn’t have marker stains 6 months after you first get it. I did a little research and found an enamel coated board that looked good. Where to put it though? My new shop is big, but lacking in wall space. time to get creative.

The circuit breakers are in the right real estate. I need access to them, but only occasionally. I noticed the gear track above the panes and decided to take advantage of them. I did a few test prints and came up with a double hook that snaps in nicely. Those supported two strips of wood that the whiteboard mounts to. The whiteboard is very stable and can be removed quickly when I require circuit breaker access.

I picked up a dremel around Christmas and have been finding it really useful for small odd jobs. I ditched the organizers that came with it and have put everything into a clear organizer box. To keep the cut off blades separated, organized, and from getting broken I printed a simple wheel holder.

After working on the old and new house for months my driver bits were scattered to the winds. Over time I kind of piled them up in one place, but never managed to get them back into the right organizer box. Instead I decided to revamp the top drawer of the toolbox that holds all my drill press stuff to act as a driver bit organizer space. I printed blocks with well spaced round holes to hold the short bits, and longer trays to hold the various 2″ long bits.

I ended up making smaller versions of the holed blocks. I have a lot of #2 philips and #2 square drives, and only a small smattering of everything else. Now everything is really easy to access and find. I definitely don’t need to buy bits any time this century. Stash beyond life expectancy.

Drill Organizer

The organization bonanza continues. My workbench has been the collector of all things used, but without a proper place to call home. In my last shop I had a place to store my dewalt drills in a hanging organizer above the toolbox. Bits were stored in a little shelf setup nearby. Neither of those made it through the move.

My previous drill hanger was a piece of plywood with some rough cutouts that hung, via zip ties, from wire shelving. It worked pretty well, so I will make a nicer version of that. I measured the drills and tried to make a careful slot for each.

The hammer drill (far right) was a little wider in spots than I thought, so it took a little freehand work to get right. The rest fit beautifully the first time. Everything got a chamfer inlet and a router roundover top and bottom. The back edge is cut at a 5 degree angle to tilt the whole board upward. It makes them want to slide to the front of the slot a little. No vibration or jostling will cause them to fall.

Everything hangs from the french cleat system I already had going. The drill holder was supported with some blocks underneath cut to the similar 5 degree upward angle. Underneath it all I put a box with pilaster rails. They accept shelf clips and are really easy to work with. I have used them in other shop applications like my hardware rack. 1/2 plywood serves as shelves for batteries, and drill accessories.

Instead of routing a groove for the pilaster rails I left them proud. This was easier to manage in the 1/2 plywood sides, and it meant cutting a notch in the shelves would lock them into place, front to back, between the pilaster rails. Everything fits with room to spare and adjustability to accommodate.

Hanging Bosch Flexiclick Station

I happened across a Bosch flexiclick around the black friday season. It is a 12V driver with interchangeable heads; offset, hex driver, and regular 3/8″ chuck. Any of the 3 can go on a right angle attachment. It is pretty genius. I have owned their pocket driver for a few years and love it to death. I liked it so much I built it a portable caddy a while back. This new driver needs a home too.

I started by imaging a few things I wanted to make prints for on top of my cutting mat. It provides a good grid reference when making things in CAD. That usually gets you a 90% solution. The drill body will need a holder and the charger has no wall mount ability. Usually they have some key holes in the bottom to let you hang them from a screw.

I have a wall section with a french cleat so I arranged all the holders until I got a compact layout. Here are all the printed parts screwed down on a scrap board.

Starting off at the top is a plate that holds the charger. It is shaped like the charger with a channel underneath to allow a zip tie to pass through and hold it down. A cleat on the bottom keeps it from slipping down. The one zip tie wrap has been sufficient in holding it down with battery connects/disconnects.

The drill body has a nub sticking out where the various heads are removed. I used that to provide a good lock in mechanism. It is sturdy enough to have not fallen off yet, but is easy to plug in and out. The bottom bent section has some flex to it which is part of the magic.

The battery holder is not my design, Thingiverse link to the original designer.

Last but not least is the tray that holds the flexiclick heads. The right angle and offset attachments have a high enough center of mass that they need a little helper support to keep them from toppling over.

I bundled my three original designs and uploaded them as a group to Thingiverse. All together fully populated and with the wires bundled up, it looks like a nice drill station. I had room left over so I stuck a Ryobi charger on there for good measure.

If I were to do a review of this tool I would say it is good but would have been a lot better if it were brushless. Trying to mix this many functions together always results in some compromises. Still, I use it for small light drilling quite often, and the offset driver has gotten me out of a bind.

Mobile Clamp Rack

The next set of loose junk around my garage to organize are my clamps.  In the previous shop, these filled every nook and cranny along one wall.  Those dowel holders are a very efficient way to pack as many clamps in as possible horizontally.  The professional metal brackets don’t pack quite as tight, but look nice and make the clamps easier to access.  I had bought a number of them in the past, but didn’t use very many for lack of space.  Thank goodness I never throw anything away!

My new shop has a lot of space, but not as much wall as you would think.  Windows, doors, and a lot of plumbing stuff take up much of the available wall surface.  To remedy this, I need a new wall.  A wall on wheels.  I cut down two 1/2″ sheets of plywood and screwing them down to a 2×4 frame.

The wall stands on a set of 2x4s with casters and is short enough to get under my garage door.  I can roll this anywhere in the shop now.  The frame took 4 boards, and the legs with braces another 2 for a total of 6 2x4s.  I had the casters already, but went for nicer grade plywood and ended up spending about 100 dollars to build this.

I used a few of my previous clamp holders, but ditched most of the hodge podge for the nicer looking store bought metal brackets I already had.  Everything got directly screwed to the plywood face.  This big of a blank canvas supports all sorts of solutions and lets me pack in clamps efficiently.  I even managed to get my saw/router guides and cawls onboard.  I may eventually re-organize so they are grouped more by length than type of clamp, but with everything so open it is really easy to see what is available.