Vacuum Cart

I am trying to make a commitment to do better dust collection in the new shop. I want to prevent the thick layer of sawdust the was on everything in my last shop, and I want to keep my lungs healthy for another half century or so. I have a few projects coming up that are aimed at those goals. The first being a shop vacuum cart.

I have used a small shop vac for specific applications, but never had a general one to use at different places around the shop. My portable sanders, router, miter saw, and other dust generating tools often went un-vacuumed.

I picked out a decent sized vacuum that had good specs but wasn’t the highest end you could get. It seems like for another 100 bucks you got a few features and a marginal increase in performance. The next level above that would go to the pro-sumer version at 5x the price. Not gonna happen on my current budget. I took some of the old counter top material left over from the previous owner and routed a nice radius on the front.

I picked up the milescraft circle cutting jig for an upcoming project, but decided to give it a test run here. What a great jig! Well worth 40 bucks. There is going to be a 5 gallon bucket pre-separator before the main vacuum. I screwed a bucket to the base to hold the separator bucket and built up a platform to get the shop vac higher.

I did a lot of positioning and found that moving the bucket to the right side and rotating the vacuum to the left let the inlet hose clear more easily. I screwed the shop vac down through the base into the platform. Hopefully these screws don’t rip out. If they do I will lose a lot of vacuum pressure.

I got a dust deputy brand cyclone separator. It is supposed to spin the dust out to remove most of it before it gets to your filter. The hose port situation is a little awkward. The port up top goes to the shop vac. Even with elevating the vacuum it is an odd stretch. The hose wants to kink in on itself.

I took kind of a step back and had a think. This calls for some 3D printing. The top of the dust deputy has a tapered shape to it. I printed a matching ring that fits into a 2″ PVC elbow. The printed part got epoxied into the elbow and fits on the top of the dust deputy. The friction fit holds it well and makes a good seal, but lets it be removable.

With the elbow taken care of I created another fitting to push onto the end of the corrugated vacuum hose. This one works a bit like the fitting that comes with the vacuum. It slips over the outside and locks into the ridges. They are a 1/4″ pitch. I made a fitting with ramped one way rings inside. It pushes on easily, but is tough to remove. That should form a decent seal as well.

I might bond this part in eventually, but for now, the hose can be removed, and so can the elbow. It makes taking the bucket lid off and dumping the dust easier.

All assembled, I wanted to perform a test. I dumped out the main vacuum body and the removable bucket. I then went around and vacuumed a section of the shop floor around my miter saw and where I had been working on this project. I came up with a few cups of dust, a bunch of leaves and some chunks of stuff. The vacuum chamber was basically empty.

This is great news. Now I can easily empty the smaller bucket instead of the big vacuum. Instead of running a standard pleated filter I can use a bag. The bags get disposed of, but have a finer filtration level. With 99% of the junk getting caught in the vortex, the bags will last a long time. Plus, anything that might puncture a bag will get filtered out.

I have been using this a lot with my router for a really big dust job and everything has been working wonderfully. If you are thinking about adding a dust deputy to your shop vac, do it!

Corner Chamfer Router Template

I have gotten some good use out of my router radius templates. I saw an interchangeable jig system that did a similar job and included chamfers in addition to the radii. First a reminder of how they work. You sit the template on top of the wood and use a special router bit that is a cutter with a matched diameter bearing on top. The bearing follows the template and removes any wood that protrudes beyond it. Ideally you cut off as much waste as you can on the bandsaw or elsewhere. Routers don’t remove a lot of material well.

I modeled a variety of them from 0.5″ to 1.25″. The length given is a leg of the isosceles triangle that will get removed, not the hypotenuse. See the diagram below.

I printed a stack of them in case the need arises, and uploaded the design to thingiverse. If they look odd compared to my normal prints, it is because I used some cheap translucent filament I had lying around. I figure they will get torn up eventually, so no need to use the good stuff.

July 2018 3D Prints

Monitor Lift

One of my office monitors started making odd noises and showing crazy artifacts.  It got to the point of being un-usable, so I replaced it.  The pair was 5 years old and they don’t sell that model any more.  The cheap replacement I bought didn’t come in the same height and neither monitor had height adjustability.  A black circular disk printed at the right thickness matched the two screens up well.  A copious sprinkling of office desk clutter helps camouflage the printed lifter.

DSC_1420


Electrical Cutouts

There is going to be a lot of power and low voltage routing going on at the new house.  I have been practicing with my oscillating multi tool to get the cutouts just right.  A set of tracing templates would help.  It turns out low voltage and high voltage boxes are slightly different sizes.  Who knew?

They are pretty simple.  Color coded and labeled for their intended use, and thick enough to balance a bullet level on top.  Mark where you want the box to go, trace out the square, cut and install.


Laser Case

I picked up a laser range finder to help out with all the flooring and other work at the new house.  It is really amazingly accurate, but leaves something lacking.  There is no case.  The delicate output window for the laser is unprotected, and so is the screen.  A sock or super basic nylon case would have been helpful.  No worries, I printed my own, and shared it on Thingiverse.


Cup Holder

Our new place has a bigger yard and that requires a bigger mower.  I found a riding mower to act as my trusty yard steed.  It fulfills all of my boyhood fantasies of owning a riding mower except one.  The cup holder.  Basically it doesn’t hold my RTIC cup.  I fixed that with a little Husqy orange liner.  Can’t go losing your drink every time you hit a bump.

Death and Resurrection of a Drill Press

My beloved drill press is a Craftsman from the early 90s (I think) that I snagged on craigslist.  It has served me well, but is very difficult to move.  Top heavy and with a small base; even small shifts in position are precarious.  I am going to need to move it a lot soon, so when woot had a Bora Portamate mobile base on sale I snatched it up.  I was walking the drill press out of its corner to get the base installed when disaster struck.

20180720_135157

I tried to control it on the way down, but once it got going there was no stopping it.  I didn’t get hurt but the arm that holds the table broke off.  I still had a drill bit installed in the chuck, and that is what kept the table from sliding further.  It bent the drill bit, but the quill appears true.  I stood it up and started it spinning.  No wobble of any sort that I could see.  With that established I gathered up the broken parts.

Maybe a quick visit to the local welding shop would have me set right?  Apparently cast iron is very difficult to weld.  They were not wild about trying, and wouldn’t guarantee me any of their work.  Whelp…forget that.  After being really bummed for a day or two, I decided I could build up my own top table top out of the scraps I had around.  I gained enough confidence to install that mobile base.  It floats like a dream now!

DSC_1377

I started with a stout piece of oak drilled to match the table arm attachment point.  A drill press would have been really useful there, but I managed without.  From there I built out ribs that hold the top.  I made sure everything was square with respect to the drill bit before screwing them in completely.

The table top will be done with two layers.  The top will have a square cutout that holds a sacrificial drill insert, and the bottom has a hole so you can push up from the bottom to remove the insert.  I printed a square guide to let me cut out a 2.75×2.75 inch hole for the insert.  That new plunge router lets me do all sorts of cool things.

DSC_1402

I routed some slots for a set of aluminum t-slot guides that hold the fence in place.  The fence is just two pieces of the same plywood glued back to back.  I cut a dozen of the center inserts.  They all got an undercut chamfer to help keep dust from letting them sit level.  This table is smaller than my last, but I feel it is more functional by far.  It was a good recovery, and ultimately led me to making a better drill press table.

DSC_1407

DSC_1408

 

June 2018 Prints

A bountiful harvest of prints this month.  I had a lot of work going on in the shop, and that typically ends up producing different jigs and prints to help out.

First up, I reorganized all of my machine screws into one central organizer.  To help with organization and to tell them apart I printed a screw ruler and hardware guide.

20180617_152833

The ruler measures screw lengths of either flat head or other style.  The guide has through holes that match my common hardware styles along with examples of washers and nuts.  It makes matching a random bit of hardware easier.


I do a pretty good job keeping my eye and ear protection on when in the shop.  Dust masks are another thing.  A lot of my tools have vacuum, but certainly not all.  Most masks I have tried don’t work well with the beard and mustache, and most are pretty hot.  This one works well for me.  I built it a little home to prevent damage, and so I always know where it is.  I feel a little like bane when I wear it.

I took a photo of it on the cutting mat, then used the lines to help design an appropriate housing shape.  The hinge required a single screw and nut, and a magnet in the lid and body keep it closed.  The backplane screws down so I tucked it under a cabinet with other PPE.


I had a lot of flat parts that needed holes drilled in them in the same location.  Instead of marking every one I made a drill template with bushings.  The bushings are sized so a particular drill bit just fits inside.  It keeps the bit on location and perpendicular to the surface.  They will wear out eventually, but are easy to replace.  These all fit in a 5/8″ hole and have two screws to keep them in place.  Once built this saved me a ton of time and increased repeatability.

20180612_203922


Dust collection fittings never fit.  There was an article about it in one of my woodworking magazines.  The guy basically threw up his hands and told the industry to get their act together.  I emailed him with my solution.  He said it was cool, but a workaround for an issue that shouldn’t exist.  Agreed, but here is my workaround for my miter saw.

DSC_1305


I switched to using these small bottles from woodcraft for my glue.  I like them a lot better than the bottles that most glues come in.  The only trick is that the little red caps blink out of existence once dropped.  I did a few test prints with a segment missing to get the taper size and groove right for this one, but I think I have a winner.  It is much easier to handle, harder to lose, and is more easily replaceable.


I had kind of a failed attempt at a vacuum system for degassing epoxy.  I might revisit it at some point, but for now it is a defunct project.  I needed to tap some polycarbonate for pipe fittings and bought a pipe thread tap.  It didn’t come with any case or even pouch, so I printed one.  I sprayed it good with oil to prevent rust.  Hopefully stored this way it will not get lost, broken, or rust.

Bookbinding Press

During a visit to my crafty mother, I came across a good build to support her habits.  She showed me a series of bookbinding finishing presses.  I am not super familiar with how they work, but they looked a lot like a moxon vise.  I am planning out a moxon vise build of my own, so this would be a good learning experience and make a great gift.

DSC_1280

DSC_1281

Traditional books have a lot of layers of material that need gluing together.  This helps keep it all clamped for various operations.  The side wings let you clamp it to a table, and with it hanging over the edge, any length book can be held.  The jaws will open to accept a 3″ thick book, and there are 13 inches between the screws, allowing for a very tall book.  5/16″-18 hand screws should provide plenty of clamping force.  The hand screws come out, so it can be disassembled and packed into a smaller space.


I started with the backbone and dovetails.  If something was going to get screwed up, it was the dovetails.  I need to cut a lot for an upcoming project and I am beyond rusty.  Mark, saw edges, fret away waste and pare the rest.

My dovetail transfer jig has already come in handy.  The pins look pretty rotten, but they should be very structurally sound.  Sorry mom!


With that taken care of I glued up two pieces for the front, and added another to the backbone.  One piece was taller than the other which eventually got planed to an angle.  That gives your fingers easier access to the book spine.

DSC_1236

DSC_1237

DSC_1238

I assembled the dovetails and put on side wings that let you clamp this jig to any table or workbench.

DSC_1240

DSC_1242

When all the glue was well cured I put on a few coats of polyurethane in the hopes that bookbinding glue wouldn’t stick to it.  Felt pads on the bottom should keep it from scuffing any tables.  I pounded in some threaded inserts meant for wood.  They should hold just fine, but to be sure I sank a few screws beside them.


To run the threaded rods in and out you are going to need a stout handle.  I chopped some maple dowels down to size, drilled out for a 5/16 threaded insert, reduced the entry shoulder for a brass sleeve, then flipped it around, threaded it onto a 5/16 mandril, and smoothed out the back side.

The bare wood got multiple coats of spray polyurethane, then when cured, I epoxied the brass sleeve on the handles, and the threaded rod in place.  DSC_1276.JPG